Cluster Deployment at Fermilab

Don Holmgren

http://lqcd.fnal.gov/talks/

All Hands Meeting – Feb. 21, 2003

Outline

- Facility details
- Using the FNAL clusters
- Other SciDAC work at FNAL
- Future plans

Cluster Details

- Available hardware:
 - 48 dual 2.0 GHz Xeon systems (Steel Cloud, Reston, VA)
 - 1 GB DDR memory (E7500 chipset 400 MHz FSB)
 - 17 GB scratch disk on each node
 - all machines with Myrinet 2000 (2MB, 133 MHz LANai-9)
 - 16 of the machines are also on a 2-D GigE mesh, 4 NIC's per node
 - mesh can be reconfigured via patch panel
 - 128 dual 2.4 GHz Xeon systems (CSI Inc, Alpharetta, GA)
 - same memory and disk configuration
 - all machines with Myrinet 2000 (112 with 133 MHz LANai-9, 16 with 200 MHz)
 - Head node (lqcd.fnal.gov)
 - 4 x 1.5 GHz Xeon processors
 - 4 GB memory
 - 0.9 TByte RAID-5 disk array (will purchase 2 x 1.8 TByte arrays)
 - 3 x 300 MByte network-attached storage units

Single Node Performance

- Improved Staggered Performance
 - Each site is 1656 bytes large
 - Blue ticks mark (2,4,6,8,10,12,14)⁴
 - L2 cache (512K) near 4⁴
 - FPU dominates for lattices smaller than 4⁴
 - Memory bandwidth dominates for lattices larger than 4⁴
 - 533 MHz FSB systems just now available with PCI-X

Performance - Networking - Pallas sendrecv

Performance - Multinode

- HPL (top500.org): R_{max} = 550 GFlop/sec for 128-node cluster
 - #97 ranking on latest list
 - 10% slower than 2.4GHz dual Xeon RDRAM clusters at Utah, Cornell
- ullet MILC scaling (L^4) Improved Staggered Inverter

Other Relevent FNAL Computing Assets

- Connection to the Internet
 - OC3 connection to MREN
 - OC12 connection to ESNET
 - likely future connection to "Starlight" interchange
 - ESNET backbone connection at 10 Gbps
 - also Abilene, Internet2
- GRID-Enabled Mass Storage
 - 5 STK silos, 5800 cartridges each (9940A and 9940B drives)
 - 7 AML2 Quadra Towers, 5000 cartridges each (LTO and LTO2 drives)
 - currently 650 TBytes stored, more than 14 TBytes moved per day
 - designed for 1 Petabyte/year

Software for Mass Storage

- Direct access to tape via Enstore software
- Also, can use tapes via disk cache (FNAL/DESY dcache) using:
 - vanilla FTP (only for reading, not writing)
 - Kerberized FTP
 - X509 certificates
 - GridFTP
- Storage Resource Manager (SRM) project:
 - collaboration with JLAB
 - version 1 API in production
 - version 2 API being coded, will give the following high level services:
 - reliable copy between storage repositories (eg NCSA to FNAL)
 - primitives to assist schedulers

Using the FNAL Clusters

Building code

- Available compilers:
 - gcc 2.95.3 (/usr/bin)
 - gcc 3.2 (/opt/bin)
 - pgi 4.0.2 (via setup pgi)
 - will add Intel compiler
- MPI:
- mpich-gm (/usr/local/mpich)
- mpich-gm-pgi (/usr/local/mpich-pgi)
- QMP:
 - over mpich-gm (/usr/local/qmp)
 - over gm (/usr/local/qmp-gm, "single port")
- VMI (/usr/local/vmi)

Using the FNAL Clusters

- Running your code
 - Batch system is OpenPBS with Maui scheduler
 - scheduler restricts jobs to be contiguous within each clusters
 - 4 nodes on 48-node cluster reserved for 5 minute jobs
 - MPI jobs:
 - use *miprun*
 - node file will automatically be generated from information from PBS
 - VMI jobs:
 - use vmi-launch, node information automatically taken from PBS
 - QMP jobs:
 - use QMPrun
 - user script currently must generate node list from \$PBS_NODEFILE

Allocations and Quotas

- Allocation restrictions to begin in April:
 - PBS will only accept jobs with project identifiers
 - example: qsub -A myProject -1 nodes=16 run.script
 - users can belong to multiple projects
 - accounting will run nightly
- Storage quotas:
 - 4 GB per user backed-up home area
 - project-based data disk quotas
 - project-based tape quotas
 - scratch areas will be available

Web Resources

- See http://lqcd.fnal.gov/. Available information:
 - cluster status at a glance
 - node mapping of all jobs
 - documentation
 - user guides
 - benchmark results

Getting Accounts

- See http://lqcd.fnal.gov/user_accounts/
- Summary of procedure:
 - submit a successful proposal to the Scientific Program Committee
 - request Fermilab Visitor ID
 - request Kerberos principal and cryptocard
 - request account on lqcd

Kerberos at Fermilab

- According to lab policy, all logins require Kerberos
 - prevents clear-text passwords, and allows detailed logging of all computer access
 - web pages, other read-only resources do not require Kerberos
- How Kerberos works:
 - to login to a machine, you need a ticket
 - a Kerberos principal allows you to obtain a ticket-granting ticket
 (TGT)
 - principals are of the form username@FNAL.GOV
 - the Kerberos kinit client can be used to get a TGT
 - or, you can use a cryptocard

Kerberos Continued

- Standard KRB5 clients can be used (/usr/kerberos/bin in many Linux distributions)
 - see web pages for krb5.conf file
 - kerberized clients are telnet, rsh, rlogin, ftp, ssh (all encrypted by default)
 - non-kerberized clients will result in a cryptocard challenge
 - for ssh with cryptocard, be sure to hit "return" to password prompt
- Obtaining kerberos
 - Standard MIT KRB5 may be installed on your system already, or
 - use Fermi versions see http://www.fnal.gov/docs/strongauth/
 - use statically-linked versions from http://lqcd.fnal.gov/kerberos/
- You may already have Kerberos principals from other sites (eg NCSA)
 - if so, you'll need to modify /etc/krb5.conf to add FNAL.GOV realm and KDC's
 - holding TGT's from two realms simultaneously is tricky but possible
 - this is useful, for example, for moving data between sites
 - don't use kinit over unencrypted connections! (FNAL will catch you)

Prototype Routed Mesh Network

Motives

- High performance, switched networks (Myrinet, Quadrics, SCI) have good bandwidth,
 low latencies, mature software, and high prices
- Switched gigabit ethernet suffers from lower bandwidth, higher latencies, limited switch sizes, immature software, but low prices
- Gigabit ethernet meshes are very cheap and have good latencies, but immature software, poor non-nearest-neighbor performance, and rigid configurations

Weapons

- FPGA's with multiple high speed serial links are now available
- Some FPGA's will also have multiple PowerPC CPU's aboard

Opportunities

- Fermilab is already building prototype PCI cards with these FPGA's for data acquisition
- Simple nearest-neighbor mesh appears straightforward with more complex firmware, routing in the network is possible

FPGA-based NIC

- 8 bidirectional fiber or copper 2 Gbps links (reconfigurable)
- fast/wide PCI interface (PCI-X in next generation)
- long-term goal is to build 4-D or higher mesh with routing
- FPGAs with CPUs could allow sums, reductions to be done by the network

Prototype Mesh Network Schedule

- First boards arrived: February 2003
- First firmware (PIO from computer, DMA to computer) and initial testing: March/April 2003
- Protocol design and implementation: thru Summer
- QMP implementation: Fall 2003
- Strict nearest-neighbor first, routing later

Prototype Itanium2 Cluster

- Encouraging Itanium2 results obtained with help from HP, Summer 2002
- Extensive software development necessary to get good performance
- Prototype cluster:
 - 2 dual 900 MHz machines,
 one Linux, the other dual boot
 HPUX/Linux
 - 6 additional single 900 MHz
 machines
 - Myrinet (LANai 7)
 - SCI (Wulfkit)
 - Online next month

Cluster Strategy

- Clusters show promise as long term, renewable compute resources:
 - first, establish significant facilities (eventually order 1000 machines?)
 - then, continuously track the latest commodity components
 - refresh a fraction of the facilities periodically (replace 33% annually?)
- This can work, as long as:
 - the software is appropriately structured (QMP/QLA allow machine abstractions)
 - commodity hardware stays balanced for our problem (sufficient I/O and memory bandwidth for floating point capability)
 - the non-commodity pieces (networking) don't break the budget

The Next Fermilab Cluster

- Next FNAL cluster purchase will be late Summer 2003
- Possible architectures:
 - 533 MHz FSB dual Xeon unless something better
 - 800 MHz FSB single P4, only if PCI-X
 - Itanium2 if software development is tenable
 - AMD Hammer/Clawhammer/Sledgehammer if AMD delivers
 - PPC970 is a potential wildcard
- Possible networks:
 - GM over Myrinet
 - GigE over Myrinet
 - GigE mesh